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J.  Phys. A: Math. Gen. 22 (1989) 641-645. Printed in the UK 

Tight bounds to the Schrodinger equation eigenvalues 

Francisco M FernBndez, Gabriel I Frydman and Eduardo A Castrot 
Division Quimica Teorica, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas 
(INIFTA), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina 

Received 14 June 1988 

Abstract. Increasingly tight upper and lower bounds to the Schrodinger equation eigen- 
values are obtained from the Riccati equation for the logarithmic derivative of the wavefunc- 
tion. The solution of this non-linear equation is written as a Pad6 approximant and the 
bounds are given by the roots of a sequence of determinants. Numerical results are shown 
for the anharmonic and quartic oscillators. 

1. Introduction 

Fernhndez and Castro [ 11 have recently shown that approximations to the eigenvalues 
of the Schrodinger equation can be obtained from the roots of the coefficients of the 
Taylor expansion for the logarithmic derivative of the wavefunction. The method 
proves to be useful in treating one-dimensional and central-field models and leads to 
upper and lower bounds to the energy provided rather strict conditions are satisfied. 
An approach to more difficult problems has also been suggested [ l ]  which has led to 
analytical expressions for the energies of the Zeeman effect in hydrogen [2]. However, 
high-order numerical investigation of easily tractable models shows that the procedure 
is divergent and for this reason the accuracy of the results is limited. [l] .  

The purpose of the present paper is to develop an improved version of the 
above-mentioned method that leads to increasingly tight upper and lower bounds to 
the lowest eigenvalues. To this end the logarithmic derivative of the wavefunction is 
approximated by a sequence of Pad6 approximants as discussed in § 2 .  Results for 
the anharmonic and quartic oscillators are presented in § 3 and conclusions are drawn 
in 8 4. 

2. Method 

The procedure discussed below applied to the ground and first excited states of 
one-dimensional models with parity-invariant potentials and to the s states of central- 
field problems. More general quantum mechanical systems will be studied elsewhere. 
For the sake of concreteness we consider the one-dimensional time-independent 
Schrodinger equation 

$"(x) + ( E  - V ( x ) ) $ ( x )  = 0 ( 1 )  

t To whom correspondence should be addressed. 
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where 
k 

V ( x ) =  UjX” v k  > 0. ( 2 )  
j = l  

Extension to rational potentials V ( x )  is straightforward. 
The function 

f ( x )  = - $ ’ ( x ) / 9 ( x ) + p / x  (3) 
where p = 0 for the ground state and p = 1 for the first excited state, satisfies the Riccati 
equation 

f 2  - f I- 2p f / x  = V - E. ( 4 )  
The function f ( x )  is regular and can be expanded in a Taylor series around the origin 

CO 

f ( x )  = f,x2j+l 
j = O  

where the coefficients f, are found [ l ]  to obey 

where fo = E / ( 2 p  + 1 ) .  Clearly, f, i s  a polynomial function of f a  of degree j +  1 .  
A rational approximation 

can be found so that 

To this end the coefficients aj and bj have to satisfy 
m 

a m  = 1 bjfm-j m = 0,1,  . . . , M 
j = O  

( 9 )  

where bj = 0 i f j  > N. In order to have a non-trivial solution to the homogeneous linear 
equations (10) it is necessary that 

det 9 = 0  ( 1 1 )  

where B is the matrix of the system (10). The roots of ( 1 1 )  determine a set of fo 
values. Some of them prove to be bounds to E / ( 2 p  + 1 )  for the ground and first excited 
states of ( 1 ) .  

We first notice that f defines a potential V ( x )  + R ( x )  given by 

f 2 - f ’ - 2 p f / x = V + R -  W W = ( 2 p + l ) f o  ( 1 2 )  

$ - eXp[-aMX2(M-N+’) / 2 (  M - N +  1 )  b ~ ]  

and an approximate wavefunction $, 6’ = -f$, which behaves asymptotically as 

( 1 3 )  
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when x + CO. It cannot yield the exact asymptotic behaviour 

t,b-exp[-vL'2xk+'/(k+ l)] (14) 

unless 2 ( M - N ) = k - 1 .  

that R reduces to only one term. When 2 M + 1 > 2 N + k we have 
If M + N + 2  = J,  where J = max(2M + 1 , 2 N +  k}, then it follows from (6)-(10) 

R = ~ K x ~ ~ ~ ~ / B ~  (15) 

and it can be easily proved that W > E provided 

J -m 

Since $ - exp( -aMx4/4b,), this last equation always holds for k > 3. 
On the other hand, when 2 M  + 1 < 2 N  + k it is found that 

R = - v k ~ 4 N + 2 k / B 2 .  (17) 

Since - $ ' I / $ +  V =  W -  R S W, it follows from theorem 3 of [3] that WS E. Our 
algorithm can therefore yield both upper and lower bounds to the first two eigenvalues 

In the case of the anharmonic oscillator (k  = 2) one can choose M = N + s, s = 0 , l  
and the bounds are found to be given by the roots of the Hankel-Hadamard deter- 
minants (cf (10) and (11)) 

of (1). 

H L  = det 9 su = . L + j + s - l  i , j =  1,2, .  . . , N + l .  (18) 

It is worth noticing that the Riccati equation (4) applies to central-field models 
provided that 0 < x = r < 00 and p = 1 + 1, where 1 = 0, 1, . . . is the angular momentum 
quantum number. 

3. The anharmonic oscillator 

In order to check the conclusions drawn in 3 2  we consider here the anharmonic 
oscillator potential 

V (  x) = x2 + Ax4 (19) 

because the Schrodinger equation eigenvalues have been accurately calculated [4-61. 
A tedious but straightforward calculation using (6) and (18) shows that 

HY= [( W 2  - 1)2( W2-25)/63 + 6 h  W (  W2 - 1)/7 - A2]/25 

+ h2(222 W2 - 294)]/99 225 

(20) 

Hi=[(W2-1)2(W2-25)(  W2+3)/3-6AW(W2-1)(31 W2-47) 

(21) 

for the ground state and 

HY= [( W 2  -9)2( W2-49)/91 125 + 8h W( W2-9)/3645 - A2]/49 

H:=[( w2-9)2(  W2-49)(W2+11)/1125-2AW( W2-9)(17w2-233)/15 

(22) 

+A2(122 W2- 1458)]/1964 655 (23) 
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for the first excited state. When A = O  the roots of Hy and H i  agree with the actual 
harmonic oscillator eigenvalues Eo = 1, E ,  = 3, E2 = 5, and E ,  = 7 .  As shown in table 
1 the implicit analytical expressions HI(  W, A )  = 0, s = 0, 1, yield acceptable estimates 
of Eo and E ,  for all values of A, and W,,(Hy) < E, < W , ( H : )  as was mentioned above. 
The second and third excited states can also be obtained from the roots of H i  but the 
accuracy is poor for A > 0.1. The problem posed by such excited states will be studied 
in a forthcoming paper. 

To test the convergence of the method we consider the most unfavourable case of 
the quartic oscillator 

V ( x )  = x4, (24) 

The relative deviations SS, = [ W,(HS,)  - En]/E, for the two first eigenvalues Eo and 
E ,  [5,6] are shown in table 2 for s = 0, 1 and increasing N values. In both cases the 
proper root of H &  increases providing tight lower bounds. On the other hand, H', 
exhibits two zeros W,(Hh)L and W,,(H',)' when N >  1 so that the former increases 
and the latter decreases as N increases. It is found that W,(H',)L< W,,(Hk) < E, < 
W,,(H',)u for n =0,  1 and N >  1. Besides, the convergence rate of the algorithm is 
formidable with (8h)",8& and being roughly of order 10-2N+2, and 

respectively. We are at present unable to account for the lower bound 
w, ( H  ',) L. 

Table 1. Upper and lower bounds on the first two eigenvalues of the anharmonic oscillator 
(19) obtained from the roots of Hi( W, A ) ,  compared with the exact values E, and E ,  taken 
from [4,5]. 

A 

lo-' 
100 
10' 
102 
1 o3 
1 o4 

WO ( H 3  

1.065 166 
1.389 
2.432 
4.955 

10.54 
22.64 

Wo(H:) 

1.065 292 
1.392 67 
2.451 
5.005 

10.651 
22.889 

Eo 

1.065 286 
1.392 352 
2.449 174 
4.999 418 

10.639 789 
22.861 609 

W,(H?)  W l ( H t )  El 

3.2775 3.306 915 3.306 872 
4.5407 4.650 2 4.648 813 
8.33 8.606 8.599 003 

17.22 17.846 17.830 193 
36.76 38.122 38.086 833 
79.03 81.979 81.903 317 

Table 2. Relative deviations S S ,  = [ W,z(HL,) - E, , ] /Et ,  from the first two exact eigenvalues 
E, = 1.060 362 090 484 182 89 [5,6] and E ,  = 3.799 673 029 801 394 16 of the quartic oscil- 
lator (24). 

n = O  n = l  

1 - 9 . 6 ~  1 0 - ~  1.0 x 1 0 - ~  
2 - 1 . 2 ~  1 0 - ~  -1.3 x io-2 1.3 x 1 0 - ~  
3 - ~ . ~ x I o - ~  - 2 . 0 ~ 1 0 - ~  1 . 5 ~ 1 0 - ~  
4 -1.9 x lo-' -2.9 x 1 0 P  4.9 X lo-'' 
5 -1.9 X lo-'' -3.9 X 1 0 P  1.5 X lo-'' 
6 - 1 . 9 ~ 1 0 - ' ~  - 1 . 4 ~ 1 0 - ~  l . l ~ l O - ' ~  
7 -8.0 x 1 0 - l ~  -6.9 x 1 0 - l ~  1.0 x 1 0 - l ~  

-8.4 x 1 0 - ~  9.3 x 1 0 - ~  
- L O X  1 0 - ~  -1.3X io-2 1.1 x 
- 1 . 2 ~  io-6 -1.9 x 1 0 - ~  1.3 x IO-' 

- 1 . 6 ~  1 0 - l ~  - 4 . 5 ~  1 0 - l ~  1 . 5 ~  1 0 - l ~  
-3.9 x 1 0 - l ~  -5.1 x 1 0 - l ~  L O X  1 0 - l ~  

-1.3 X lo-' - 2 . 6 ~  loM6 1.4X 
-1.5 X lo-'' -3.4X lo-* 1.5X lo-'' 
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4. Further comments and conclusions 

The method just developed yields rapidly convergent upper and lower bounds to the 
Schrodinger equation eigenvalues. For this reason we believe that it is worth further 
investigation. A difficult problem to be dealt with in most cases is the occurrence of 
undetermined coefficients f , .  This happens, for instance, when V(x) has no definite 
parity because f ( x )  =fo+flx + . . . , where fl = E +f:. Therefore, both E and fo are 
to be determined. Such a difficulty is reminiscent of the missing moment problem 
discussed by Handy and Bessis [7]. However, although they found one missing moment 
for both the anharmonic and quartic oscillators, there are no undetermined coefficients 
f, when using our procedure. In addition to this, our bounds converge faster than 
theirs as can be easily verified by comparing table 2 of the present paper with table 4 
of [7]. 
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